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ABSTRACT 
 

In all areas of finance, financial technologies are advancing thanks to machine 

learning models: from lending of peer-to-peer (payment) to management of asset (robot 

advisors) to block chain coins (payment). Models based on machine learning usually 

have high accuracy but a limited amount of explain ability. Further, high-risk AI 

applications using machine learning comply with a set of mandatory requirements and 

must be trustworthy, including Fairness and Sustainability, according to the proposed 

regulations. AI applications in finance cannot be evaluated for their trustworthiness based 

on standardized metrics. In order to fill this gap, the study propose integrated statistical 

methods that is based on the Lorenz Zonoid tool for assessing and monitoring the 

trustworthiness of AI applications over time. Sustainability was assessed by robustness 

against anomalous data, Accuracy was assessed through predictive accuracy, Fairness 

was assessed through prediction bias among different populations, and Explain ability 

was assessed through understanding of human and oversight. Using a dataset on financial 

prices that is easily downloadable, we tested our proposals 
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INTRODUCTION 
 

Artificial Intelligence (AI) applications are booming in many fields, including health 

care and finance. In comparison with "classic" statistical models, they have an advantage 

in terms of predictive accuracy. The black-box nature of machines learning models, 

however, makes them capable of high predictive performance. In regulated businesses, 

this is a concern because authorities charged with monitoring the hazards associated with 

the use of Artificial Intelligence (AI) methods may not be able to validate them (see, for 

example, Joseph, 2019) and Bracke et al., 2019). For instance, the use of AI in credit 

lending may result in automated determinations that categorized a company as being at 

risk of default without providing the underlying reasoning, preventing corrective 

measures. 
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Accuracy and explainability are not the only desirable characteristics of a ML model. 

The recently proposed European regulation on Artificial Intelligence, the AI Act 

(European Commission, 2020), attempts to regulate the use of AI by means of a set of 

integrated requirements. The AI Act introduces a risk-based approach to AI applications, 

defining AI risk taxonomy with four risk categories: unacceptable risk, high risk (the 

main focus of this paper), limited risk, and minimal risk. The requirements established for 

high-risk applications include those about sustainability, accuracy, fairness and 

explainability, which need a set of integrated metrics that can establish not only whether 

but also how much the requirements are satisfied over time. To the best of our 

knowledge, there exists no such set of metrics, yet. In this paper, we propose to fill the 

gap building a framework based on a set of four main metrics, aimed at measuring: 

Sustainability, Accuracy, Fairness and Explainability (S.A.F.E. in brief). We show how 

to build such framework.  
 

 ORCID⁡(s) using statistical methods based on the unifying notion of Lorenz Zonoid. 

Doing so, we will extend the recent work of (Giudici & Raffinetti, 2020), who has 

showed how to jointly measure Accuracy and Explainability. With the help of 

conventional statistical models like logistic and linear regression, the explainability 

condition is "by design" satisfied. In contrast to "black-box" ML models like neural 

networks and random forests, conventional statistical models may only have a modest 

predicted accuracy in complex data processing issues. This shows that post-modelling 

tools that can "explain" ML models might be beneficial. 
 

Recent attempts in this direction, based on the cooperative game theory work of 

Shapley ((Shapley, 1953)), have led to promising applications of explainable AI methods 

in finance, among which (Bracke et al., 2019) and (Bussmann et al., 2020). Shapley 

values have the benefit of being agnostic—unaffected by the underlying model used to 

compute classifications and predictions—but they also have the drawback of not being 

normalized, making them challenging to understand and compare. To overcome this 

limitation, (Giudici & Raffinetti, 2020) proposed Shapley-Lorenz values, which combine 

Shapley values with Lorenz Zonoids, obtaining a measure of the contribution of each 

explanatory to the predictive accuracy of the response, rather than to the value of the 

predictions, as is the case for standard Shapley values. 
 

In this paper we extend (Giudici & Raffinetti, 2020) and employ Lorenz Zonoids to 

build methods useful to measure not only Accuracy and Explianability, but also 

Sustainability and Fairness. The extension will allow developing an integrated 

measurement model for Sustainability, Accuracy, Fairness and Explainability, and a 

unified score of AI SAFEty. 
 

The requirement of sustainability implies the model results are stable under variations 

in the data and, in particular, when extreme data, resulting from stressed scenarios and/or 

from cyber data manipulations, are inserted into the observed data. To measure the 

sustainability of AI applications we propose to extend variable selection methods, 

available for probabilistic models, to non-probabilistic models, such as random forests 

and neural network models, using statistical tests based on the comparison between the 

Lorenz Zonoids of the predictions. The extension provides a model selection criterion for 

(non-probabilistic) ML models, not available at the moment.  
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The criterion will lead to the choice of a parsimonious model, more sustainable than a 

complex one. The extension will also allow comparing the selected model with a model 

that would be obtained when extreme data are artificially injected into the underlying 

data. The requirement of fairness requires that the results of AI applications do not 

present biases among different population groups. 
 

To measure the fairness of AI applications we propose to derive the Lorenz Zonoids 

of the predictions obtained separately for each population group, similarly to what done 

for the requirement of sustainability. Specifically, the Lorenz Zonoid tool and the 

proposed Lorenz Zonoid comparison tests are used to illustrate the proposed 

methodology in the following section. Section 3 then discusses the empirical results we 

obtained by applying our proposal to the available data, and Section 4 concludes with 

some closing thoughts. 

 

LITERATURE REVIEW 
 

Stock Market Returns 

According to Akhtar (2006), Pakistan is emerging as a global economy due to its 

steady political and macroeconomic stability, which boosts investor confidence and 

creates an attractive hub for capital, and the growth and revolution in its financial sector. 

Brealey et al. (2007) found that through historical analysis of stock market prices, 

investors can estimate their future returns and the risk of investment. Osamwonyi (2012) 

studied the impact of macroeconomic variables on stock market returns, highlighting the 

need for investors to understand this link in order to make informed decisions. The 

profitability of investing in emerging markets can be measured through aggregate returns 

on equity and dividend yield, with Pakistan's stock market resulting in the highest percent 

gain in the local index return in 2002 among global equity markets. The role of Pakistan's 

stock market in economic growth has been established over the years, maintaining its 

position as the appropriate trading market in South Asia in 2016 (Robert, 2016). 

Researchers such as Kheradyar, Ibrahim, and Nor (2011) have conducted studies to 

predict stock market returns in Pakistan based on financial ratios, which is a challenging 

issue in prominent markets (Fama and French, 2004). Empirical research shows that 

financial ratios can be used to predict fluctuations in stock market returns. Other studies 

have analyzed the link among macroeconomic variables and stock exchange returns in 

countries such as Kenya (Aroni, 2011), Ghana (Owusu Nantwi, 2011), Pakistan (Hussain 

and Sohail, 2011), China (Masood and Triki, 2012), India (Padhi and Naik, 2012), and 

Indonesia (Astuti, Nugroho, and Yogaswari, 2012).  
 

Impact of Macroeconomic Variables on Stock Market Returns.  

 

Interest Rate 

The performance of stock markets and stock returns are affected by various 

macroeconomic variables, including interest rates. However, the impact of interest rates 

on stock returns is not always straightforward, and research findings are mixed. In less 

developed countries with no established stock markets, research on the link among 

macroeconomic variables and stock returns has yielded inconclusive results (Adjasi, 

2009). 
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Interest rates, which represent the cost of capital or the price of borrowing money, are 

a key element in macroeconomic variables. When interest rates increase, the required rate 

of return on stocks rises, leading to a decrease in stock prices. This can deter investors 

from investing in the market, resulting in a decline in the stock market and economy. 

Conversely, a decrease in interest rates can be a positive sign for investors, indicating a 

growing market with lower borrowing costs (Blancher, 1981). 
 

Research has shown that changes in interest rates can affect the profitability and 

returns of stocks. High stock prices and low interest rates lead to lower cost of capital, 

making the market more attractive and leading to growth (Blancher, 1981). However, 

interest rate increases can increase stock price volatility and impact financial stock 

returns (Adjasi, 2009). 
 

Studies have found a negative correlation among interest rates and stock returns. This 

means that when interest rates increase, stock returns decrease, and vice versa. 

Researchers such as Aurangzed (2012) and Lobo (2000) have shown that interest rates 

have a negative impact on stock returns. Fama (1989) also found a negative impact of 

interest rates on stock prices. 
 

Other studies have explored the impact of macroeconomic variables on stock returns 

in specific regions, such as South Asia (Aurangzed, 2012) and Pakistan (Ishan et al., 

2007). These studies suggest that economic and financial variables are significant 

determinants of stock returns in these regions. 
 

In summary, the link among macroeconomic variables and stock returns, including 

interest rates, is complex and can vary across regions. While some studies have found a 

negative impact of interest rates on stock returns, others have yielded inconclusive 

results. Understanding the impact of macroeconomic variables on stock returns can 

provide valuable insight for investors. 
 

 H1: Interest rates and PSX (PSX) Returns have Significant Relation. 

 

Inflation Rate 

Khans et al. (2012) examined the effects of exchange rate, inflation rate, and interest 

rate on stock returns of the KSE 100 index using data from 2001 to 2010. They did this 

by using multiple linear regressions. They discovered that the exchange rate has a large 

impact on stock returns on the PSX, but rates of interest and inflation rates had little 

effects. 
 

According to Fama's (1981) proxy hypothesis, there is a negative connection among 

rate of inflation and prices of stock, which is attributed to the positive connection among 

stock returns and basic determinants of equity values. Inflation rate can be categorized 

into expected and unexpected inflation, with unexpected inflation having a greater impact 

on stock returns, particularly during economic contractions. 
 

Ozlen & Ergun (2012) found exchange rate and interest rate to be the significant 

variables in stock price fluctuation using Autoregressive distributed lag technique with 

data from February 2005 to May 2012, whereas Sohail & Hussain (2009) found long and 

short link among economics variables and stock returns in Lahore stock market from Dec 

2002 to June 2008. 
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The rising or falling of stock prices creates uncertainties for potential investors, which 

can affect the demand and supply forces at stocks. Price increases can also impact the 

investment decision of potential investors, which has a negative effect on the overall 

stock returns. Despite the Pakistani economy's poor performance, its capacity for 

development of major sectors cannot be doubted.  
 

H2: Inflation and PSX (PSX) Returns have Significant Relation. 

 

Exchange Rates 

According to Wongbongo and Sharma (2020), the effect of macroeconomic variables 

on stock returns can be positive/negative depend on the foreign exchange rate, which is 

influenced by various internal and external factors. Sohail and Hussain found a positive 

and significant link among exchange rates and stock returns, while Robert Johnson 

emphasized the importance of exchange rates in stock market macroeconomics. 

Exchange rates not only affect policy makers and economists, but also investors who rely 

on them for returns on stocks. Currency depreciation can have both short-term and long-

term negative effects on market returns, and abrupt changes in exchange rates can 

negatively impact a country's import and export. Fraser and Groenewold discovered a 

substantial influence of exchange rate variation on stock returns, while Aurangzeb found 

a positive link among foreign direct investment and exchange rates in South Asian 

countries. 
 

Tsoukalas examined the strong link among macroeconomic variables and stock 

returns, with exchange rates influencing inflation and output. Beirne and Kumar found 

exchange rates to be a risk factor in financial stock returns, with Kumar also identifying a 

bidirectional linear and nonlinear causality among stock returns and exchange rates. 

Moysami applied the vectors error correction model to study the link among 

macroeconomic variables and stock returns, while Huge explored the sensitivity of stock 

returns to interest rates, exchange rates, and market risk. Adjasi analyzed the effect of 

exchange rate fluctuations on the stock exchange and recommended measures to ensure a 

stable macroeconomic environment for better investment decisions. 
 

According to Adam et al., exchange rates have a positive impact on stock prices and 

are a main factor in macroeconomic variables, directly affecting money supply, interest 

rates, and inflation. Husung and Young noted that stock returns and currency devaluation 

can affect each other, with devaluation being a deliberate downward adjustment of a 

country's value against another currency. Johnson investigated the short-term and long-

term link among exchange rates and stock returns, finding a positive and significant link 

that determines company performance and suggests higher rates of inflation in the future. 

Finally, Ibrahim found a bivariate link among exchange rates and stock returns, while 

Zahid studied the negative impact of macroeconomic variables on stock returns, but also 

found a positive link with stocks. Abrupt changes in exchange rates can adversely affect a 

country's exports and imports. 
 

H3: Exchange Rates and PSX (PSX) Returns have Significant Relation. 
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Money Supply 

Different industries may be impacted differently by macroeconomic variables, with 

some variables having a positive effect on one industry and a negative effect on another. 

Sohail and Hussain (2009) found that in the long-run, money supply had a significant 

positive effect on PSX returns. Conversely, the study by Humpe and Macmillan (2007) 

on the link among macroeconomic variables and PSX returns found that the effect of 

inflation rate and money supply on stock market prices was negative. Gunsel and Cukur 

(2007) concluded that various macroeconomic variables, including supply of money, rate 

of interest, rate of inflation, rate of exchange, and Pakistan stock market returns, had an 

important impact on the PSX market returns. 
 

Similarly, the study by Gan et al. (2006) on the impact of macroeconomic variables 

on the stock prices of New Zealand Stock Exchange found that inflation rate and money 

supply had a negative link with stock market prices. They also noted that the percentage 

of capitalization in terms of GDP was low, resulting in a lower effect on the capital 

market. 
 

Brahmasrene and Jiranyakul (2007) analyzed the link among stock market returns and 

macroeconomic variables in Thailand using cointegration, Granger causality, and unit 

root tests. They found a positive link among money supply and stock market returns, 

while the exchange rate, industrial production, and oil prices had a negative impact. 
 

Tripathi and Seth (2014) noted that the equity market plays a significant role in 

establishing the speed of policy changes in a country and is highly sensitive to changes in 

monetary policy tools that control macroeconomic variables such as exchange rate, 

interest rate, and inflation rate. The study by Nizam, Liaqat, and Saghir (2022) 

emphasized the importance of observing macroeconomic variables, including inflation, 

interest rate, exchange rate, money supply, and industrial production, for a healthy and 

secure investment. Overall, these studies provide empirical evidence of the impact of 

macroeconomic variables on stock market returns and prices. 
 

H1: Money Supply and PSX (PSX) Returns have Significant Relation. 

 

RESEARCH METHODOLOGY 
 

Lorenz Zonoids were originally proposed by (Rossini & Tsiatis, 1996) as a 

generalisation of the ROC curve in a multidimensional setting. When referred to the one-

dimensional case, the Lorenz Zonoid coincides with the Gini coefficient, a measure 

typically used for representing the income inequality or the wealth inequality within a 

nation or a social group (see, e.g (Gini, 1936)). Both the Gini coefficient and the Lorenz 

Zonoid measure statistical dispersion in terms of the mutual variability among the 

observations, a metric that is more robust to extreme data than the standard variability 

from the mean. 
 

Given a variable 𝑌 and 𝑛 observations, the Lorenz Zonoid can be defined from the 

Lorenz and the dual Lorenz curves (see (Lorenz, 1905)). The Lorenz curve for a 

variable𝑌, denoted with𝐿𝑌, and displayed, from a graphical view point, as a red curve in 

Figure 1(a), is obtained by re-ordering the 𝑌 values in a non-decreasing sense. It is built 
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joining the set of points with coordinates (𝑖/𝑛, ∑𝑗=1
𝑖  𝑦𝑟𝑗/(𝑛𝑦‾)), for 𝑖 = 1,… , 𝑛, where 𝑟 

and 𝑦‾ indicate the (non-decreasing) ranks of 𝑌 and the 𝑌 mean value, respectively. 

Similarly, the dual Lorenz curve of 𝑌, pointed out as 𝐿𝑌
′  and represented by the blue 

curve in Figure 1(b), is obtained by re-ordering the 𝑌 values in a non-increasing sense. Its 

coordinates are specified as(𝑖/𝑛, ∑𝑗=1
𝑖  𝑦𝑑𝑗/(𝑛𝑦‾)), for 𝑖 = 1,… , 𝑛, where 𝑑 indicates the 

(non-increasing) ranks of 𝑌. The area lying between the 𝐿𝑌 and 𝐿𝑌
′  curves is the Lorenz 

Zonoid. 
 

The Lorenz Zonoid fulfills some attractive properties. An important one is the 

"inclusion" of the Lorenz Zonoid of any set of predicted values 𝑌̂ into the Lorenz Zonoid 

of the observed response variable 𝑌, graphically depicted in Figure 1(b). The "inclusion 

property" allows to interpret the ratio between the Lorenz Zonoid of a particular predictor 

set 𝑌̂ and the Lorenz Zonoid of 𝑌 as the mutual variability of the response "explained" by 

the predictor variables that give rise to 𝑌̂, similarly to what occurs in the well known 

variance decomposition that gives rise to the 𝑅2 measure. 

 

 
(a) 

 
(b) 

Figure 1: [(a)] The Lorenz curve (𝑳𝒀) and the dual Lorenz curve (𝑳𝒀
′ ); 

[(𝒃)] The inclusion property 𝑳𝒁(𝒀̂) ⊂ 𝑳𝒁(𝒀) 
 

A second important property concerns the practical implementation of the Lorenz 

Zonoid calculation. It can be shown that the Lorenz Zonoid-value of a generic variable - 

(such as the response variable, or the predicted response variable) is calculated as 
 

𝐿𝑍(⋅) =
2Cov⁡(⋅,𝑟(⋅))

𝑛𝐸(⋅)
                  (1) 

 

where 𝑟(⋅) are the rank-scores associated with the ⋅ variable and 𝐸(⋅) is its expected 

value. 
 

Equation (1) provides an easily implementable manner to calculate a Lorenz Zonoid 

and, consequently, the share of Lorenz Zonoid response explained by a model's 

predictors. 
 

The properties of the Lorenz Zonoids can be leveraged to provide metrics to assess 

the SAFEty of AI applications, as in the following. 
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Explainability. In (Giudici & Raffinetti, 2020), the Lorenz Zonoid approach has been 

combined with the Shapley framework, to obtain a metric of explainability that measures 

the additional contribution of each explanatory variable to the Lorenz Zonoid of the 

predictions. 
 

Given 𝐾 predictors, the Shapley-Lorenz contribution associated with the additional 

variable 𝑋𝑘 is: 
 

𝐿𝑍𝑋𝑘(𝑌̂) = ∑  𝑋′⊆𝒞(𝑋)∖𝑋𝑘
 
|𝑋′|!(𝐾−|𝑋′|−1)!

𝐾!

[𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘) − 𝐿𝑍(𝑌̂𝑋′)]
           (2) 

 

where: 𝒞(𝑋) ∖ 𝑋𝑘 is the set of all the possible model configurations which can be 

obtained excluding variable 𝑋𝑘; |𝑋
′| denotes the number of variables included in each 

possible model; 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘) and 𝐿𝑍(𝑌̂𝑋′) describe the (mutual) variability of the 

response variable 𝑌 explained by the models which, respectively, include the 𝑋′ ∪ 𝑋𝑘 

predictors and only the 𝑋′ predictors. 
 

The application of formula (2) leads to the ShapleyLorenz values, a measure of the 

response variable mutual variability explained by each predictor, normalised in the 

interval [0,1]. Normalisation is an important advantage of the Shapley-Lorenz measure, 

with respect to the standard Shapley values. Another important advantage is that the 

Shapley-Lorenz measure can be calculated for any ordered response variable in the same 

manner, following (1), differently from measures based on the variance decomposition. 

And, finally, being based on the mutual variability, it is highly robust to extreme 

observations. 
 

Given a ML model with 𝐾 predictors, we can thus measure its explainability score as 

in the following definition. 
 

Definition 1. Explainability score. The score for explainability can be calculated on 

the whole sample as: 
 

⁡Ex-Score⁡ =
∑  𝐾
𝑘=1  𝑆𝐿𝑘

𝐿𝑍(𝑌)
⁡                   (3) 

 

where 𝐿𝑍(𝑌) corresponds to the response variable 𝑌 Lorenz Zonoid-value, and 𝑆𝐿𝑘 

denotes the Shapley-Lorenz values associated with the 𝑘-th predictor. 
 

Accuracy. The accuracy of the predictions generated by a ML model is crucial for 

ensuring trustworthiness of AI applications. The statistical learning literature provides a 

large set of accuracy metrics (for a review see, e.g. (Hand, Mannila & Smyth (2001)): the 

most commonly employed are the Root Mean Squared Error (when the response variable 

is on a continuous scale) and the Area Under the ROC curve (when the response variable 

is on a binary scale). Both are calculated on a test sample of the data, assuming the model 

being calculated on the remaining training sample. A more robust measure is the Lorenz 

Zonoid, which can be calculated on the test set in the same way for binary, ordered 

categorical and continuous responses. This generality is a clear further advantage of the 

Lorenz Zonoid. 
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Given a ML model with 𝑘 ≤ 𝐾 predictors, and a test sample from the dataset, we can 

measure its accuracy score as in the following definition. 
 

Definition 2. Accuracy score. The score for accuracy can be defined as: 
 

  ⁡Ac-Score⁡ =
𝐿𝑍(𝑌̂𝑋1,…,𝑋𝑘)

𝐿𝑍(𝑌test⁡)
,                (4) 

 

where 𝐿𝑍(𝑌̂𝑋1,…,𝑋𝑘) is the Lorenz Zonoid of the predicted response variable, obtained 

using 𝐾 predictors on the test set, and 𝐿𝑍(𝑌test⁡) is the 𝑌 response variable Lorenz Zonoid 

value computed on the same test set. Note that, while the explainability score is 

calculated on the whole dataset, in line with its nature, the accuracy score is calculated on 

the test data set, using the ML model learned on the train data set. 
 

In this respect, a significance test for the difference in Lorenz Zonoids, which can 

extend (Diebold and Mariano, 2002) for continuous responses and (DeLong et al., 1998) 

for binary response into a unifying criterion would provide the basis for a stepwise model 

comparison algorithm which may lead to a parsimonious model, with 𝑘 ≤ ⁡𝐾 predictors 

that, while not significantly losing accuracy, simplifies the computational effort necessary 

to measure explainability, which can be applied only to 𝑘 rather than 𝐾 variables. 

Additionally, a more parsimonious model will likely be more sustainable: less dependent 

on data variations. 
 

According to the mentioned saving of computational effort, we suggest a forward 

stepwise procedure, which starts with the construction of 𝐾 models, each one depending 

on only one predictor. The application of formula (1) to all such univariate models will 

provide a ranking of the candidate predictors, in terms of their (marginal) importance, 

which can be used to determine insertion into the model. The first explanatory variable to 

be considered is that with the highest Lorenz Zonoid value. At the second step, a model 

with also the second ranked variable is fitted and a predictive gain, measured as the 

additional contribution to predictive accuracy determined by the second variable can be 

calculated as: 
 

  pay-off⁡(𝑋𝑘) = 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘) − 𝐿𝑍(𝑌̂𝑋′),⁡           (5) 
 

where 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘) and 𝐿𝑍(𝑌̂𝑋′) describe the (mutual) variability of the response variable 

𝑌 explained by the models which, respectively, include 𝑋′ ∪ 𝑋𝑘 predictors or only 𝑋′ 

predictors. 
 

The procedure can continue until the predictive gain defined in (5) is found not 

significant. To test for significance, a statistical test can be obtained rewriting equation 

(5) in terms of covariance operators as follows: 

 

𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘) − 𝐿𝑍(𝑌̂𝑋′) =

2Cov⁡(𝑌̂
𝑋′∪𝑋𝑘

,𝑟(𝑌̂
𝑋′∪𝑋𝑘

))

𝑛𝐸(𝑌̂𝑋′∪𝑋𝑘
)

−
2Cov⁡(𝑌̂

𝑋′
,𝑟(𝑌̂

𝑋′
))

𝑛𝐸(𝑌̂𝑋′)
.
          (6) 

 

As 𝑟(⋅)/𝑛 is the empirical transformation of the cumulative distribution function 𝐹(⋅) 
(see, e.g. (Lerman & Yitzhaki, 1984)), the terms in equation (6) can be re-expressed as: 
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𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘) − 𝐿𝑍(𝑌̂𝑋′) =

2Cov⁡(𝑌̂
𝑋′∪𝑋𝑘

,𝐹(𝑌̂
𝑋′∪𝑋𝑘

))

𝐸(𝑌̂𝑋′∪𝑋𝑘
)

−
2Cov⁡(𝑌̂

𝑋′
,𝐹(𝑌̂

𝑋′
))

𝐸(𝑌̂𝑋′)
,
          (7) 

 

where 𝐹(𝑌̂𝑋′∪𝑋𝑘) and 𝐹(𝑌̂𝑋′) are the cumulative distribution functions of 𝑌̂𝑋′∪𝑋𝑘  and 

𝑌̂𝑋′, respectively. In the case of linear regression, the mean of the predicted response 

values is always equal to the mean of the original target values, implying that 𝐸(𝑌) =

𝐸(𝑌̂). For more general models, the aforementioned condition does not fully hold, 

implying that 𝐸(𝑌̂𝑋′∪𝑋𝑘) = 𝐸(𝑌̂𝑋′) = 𝜇 becomes a reasonable approximation. Assuming 

such approximation, equation (7), which describes the marginal contribution (𝑀𝐶) 

provided by 𝑋𝑘, can be simplified as follows: 
 

𝑀𝐶 =
2Cov⁡(𝑌̂

𝑋′∪𝑋𝑘
,𝐹(𝑌̂

𝑋′∪𝑋𝑘
))

𝜇
−

2Cov⁡(𝑌
𝑋′
,𝐹(𝑌̂

𝑋′
))

𝜇
.          (8) 

 

In line with the previous mathematical derivations, we propose 𝛾 as an adjusted 

version of equation (8), i.e. 

 

𝛾 =
𝜇

2
⋅ 𝑀𝐶 = Cov⁡(𝑌̂𝑋′∪𝑋𝑘 , 𝐹(𝑌̂𝑋′∪𝑋𝑘)) − Cov⁡(𝑌̂𝑋′ , 𝐹(𝑌̂𝑋′))      (9) 

 

By denoting the covariances Cov⁡(𝑌̂𝑋′∪𝑋𝑘 , 𝐹(𝑌̂𝑋′∪𝑋𝑘)) = ⁡𝜉(𝑌̂𝑋′∪𝑋𝑘) and 

Cov⁡(𝑌̂𝑋′ , 𝐹(𝑌̂𝑋′)) = 𝜉(𝑌̂𝑋′), 𝛾 in (9) can be re-written as: 
 

𝛾 = 𝜉(𝜋̂𝑋′∪𝑋𝑘) − 𝜉(𝜋̂𝑋′)                   (10) 
 

A test for the equality of the two Lorenz Zonoids, can thus be developed by setting 

the following hypotheses 
 

  𝐻0: 𝜉(𝑌̂𝑋′∪𝑋𝑘) = 𝜉(𝑌̂𝑋′)⁡ vs ⁡𝐻1: 𝜉(𝑌̂𝑋′∪𝑋𝑘) ≠ 𝜉(𝑌̂𝑋′)           (11) 
 

To proceed with the test, 𝜉(𝑌̂𝑋′∪𝑋𝑘) can be derived in terms of a 𝑈-statistic, 𝑈1, 

which estimates Cov⁡(𝑌̂𝑋′ ∪ 𝑋𝑘, 𝐹(𝑌̂𝑋′∪𝑋𝑘)). The estimator is defined as: 

 

  𝜉(𝑌̂𝑋′∪𝑋𝑘) = 𝑈1 =
1

4(
𝑛
2
)
∑  𝑛
𝑖=1 (2𝑖 − 1 − 𝑛)𝑌̂𝑋′∪𝑋𝑘(𝑖) ,            (12) 

 

where 𝑌̂𝑋′∪𝑋𝑘(𝑖) is the 𝑖-th order statistic of 𝑌̂𝑋′∪𝑋𝑘1 , …, 𝑌̂𝑋′∪𝑋𝑘𝑛 
 

Similarly, the estimator of 𝜉(𝑌̂𝑋′) is 𝑈2, specified as: 
 

  𝜉(𝑌̂𝑋′) = 𝑈2 =
1

4(
𝑛
2
)
∑  𝑛
𝑖=1 (2𝑖 − 1 − 𝑛)𝑌̂𝑋(𝑖)

′ ,              (13) 

 

where 𝑌̂𝑋(𝑖)
′  is the 𝑖-th order statistic of 𝑌̂𝑋1′ , …, 𝑌̂𝑋𝑛′  
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An estimator of 𝛾 = 𝜉(𝑌̂𝑋′∪𝑋𝑘) − 𝜉(𝑌̂𝑋′) can then be provided as a function of two 

dependent 𝑈-statistics: 
 

  𝛾̂ = 𝜉(𝑌̂𝑋′∪𝑋𝑘) − 𝜉(𝑌̂𝑋′) = 𝑈1 − 𝑈2                (14) 
 

Based on (Hand, Mannila & Smyth (2001), a function of several dependent 𝑈 

statistics has, after appropriate normalisation, an asymptotically normal distribution. As 

suggested by (Schechtman et al., 2008), a way to estimate the variance is to resort to the 

jackknife method. Specifically, the 𝑛 values of 𝛾̂, pointed out with 𝛾̂(−𝑖) (where 𝑖 =

⁡1, … , 𝑛), are calculated by omitting one pair (𝑌̂𝑋′∪𝑋𝑘 , 𝑌̂𝑋′) at a time and the estimated 

variance is 

 

  Var⁡(𝛾̂)̂ =
𝑛−1

𝑛
∑  𝑛
𝑖=1 (𝛾̂(−𝑖) − 𝛾‾)

2
                 (15) 

 

where 𝛾‾ is the average of 𝛾̂(−𝑖), for 𝑖 = 1,… , 𝑛. 
 

Following the previous derivations, the null hypothesis 𝐻0: 𝜉(𝑌̂𝑋′∪𝑋𝑘) = 𝜉(𝜋̂𝑋′) can 

be tested by the test statistic: 
 

  𝑍 =
𝛾̂

√Var⁡(𝛾̂)̂
→ 𝑁(0,1)                    (16) 

and, for a given selected significance level 𝛼, a rejection region for the null hypothesis 𝐻0 

can be defined as |𝑍| ≥ ⁡𝑧
𝛼

2
⋅ 

 

Fairness. Fairness is a property that essentially requires that AI applications do not 

present biases among different population groups. 
 

To measure fairness we propose to extend the Gini coefficient, originally developed 

to measure the concentration of income in a population, to the measurement of the 

concentration of the explanatory variables which may be affected by bias, in terms of the 

Shapley-Lorenz values. 
 

Our proposal can be illustrated as follows. Let 𝑚 = ⁡1, … ,𝑀 be the considered 

population groups and let 𝐾 the number of the available predictors. We denote with 𝑣𝑚𝑋𝑘
𝑆𝐿  

the Shapley-Lorenz value associated with the 𝑘-th predictor in the 𝑚-th population. 
 

Suppose that the stepwise procedure based on the application of the Lorenz-Zonoid 

test leads to choose only a subset of all the available explanatory variables as the most 

contributing to the predictive accuracy of the model. Specifically, we denote with 𝑘∗, 
where 𝑘∗ = 1,… , 𝑘 and such that 𝑘∗ < 𝐾, the number of predictors which compose the 

selected model. 
 

With the purpose of measuring the explainability and accuracy provided by each 

explanatory variable included into the final model, we consider the vector 𝑉𝑀
𝑆𝐿∗ defined as 

𝑉𝑀
𝑆𝐿∗ = {𝑣1

𝑆𝐿∗, … , 𝑣𝑚
𝑆𝐿∗, … , 𝑣𝑀

𝑆𝐿∗}, where 𝑣𝑚
𝑆𝐿∗ =⁡𝑣𝑚𝑋1

𝑆𝐿 +⋯+ 𝑣𝑚𝑋𝑘∗
𝑆𝐿  represents the sum of 

the Shapley-Lorenz values related to the predictors 𝑋1, … , 𝑋𝑘∗. 
 

The Gini coefficient can be applied to the vector 𝑉𝑀
𝑆𝐿∗, obtaining a measure of 

concentration of the variables' importance among different population groups. For a 
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given set of selected explanatory variables, Shapley-Lorenz values which are similar in 

the 𝑀 populations lead to a Gini coefficient close to 0, indicating that the effect of these 

variables is fair across the different population groups. On the other hand, a Gini 

coefficient close to 1 indicates that the variables' effect largely depend on some groups, 

highlighting biasness. 
 

Given a ML model with 𝑘∗ and 𝑀 population groups, we can measure its fairness 

score as in the following definition. 
 

Definition 3. Fairness score. The score for fairness can be defined as: 
 

  Fair-Score⁡ = 1 − 𝐿𝑍(𝑉𝑀
𝑆𝐿∗)                  (17) 

 

where 𝐿𝑍(𝑉𝑀
𝑆𝐿∗) denotes the Lorenz Zonoid (Gini coefficient) computed on the vector 

𝑉𝑀
𝑆𝐿∗ whose elements correspond to the sum of the selected predictors' ShapleyLorenz 

values in each population. 
 

Sustainability. The results from a ML model, especially when a large number of 

explanatory variables is considered, may be altered by the presence of "extreme" data 

points, deriving from anomalous events, or from cyber data manipulation. 
 

We propose to verify sustainability by comparing predictive accuracy, as measured by 

Shapley-Lorenz values, in different ordered subset of the data, possibly altered artificially 

by anomalous or cyber manipulated ones. 
 

To this aim, conditionally on a ML model, we can order the predicted response values 

(in the test set) in terms of their predictive accuracy, from the most accurate to the lowest. 

We can then divide the ordered predictions in 𝑔 = 1,… , 𝐺 equal size groups (such as the 

deciles of the distribution). We can then proceed in analogy with the fairness case and 

build a vector including the sum of the Shapley-Lorenz values of the predictors 

composing the final model, i.e. 𝑉𝐺
𝑆𝐿∗ = {𝑣1

𝑆𝐿∗, … , 𝑣𝑔
𝑆𝐿∗, … , 𝑣𝐺

𝑆𝐿∗}, where 𝑣𝑔
𝑆𝐿∗ = 𝑣𝑔𝑋1

𝑆𝐿 +

⁡…+ 𝑣𝑔𝑋𝑘∗
𝑆𝐿  represents the sum of the Shapley-Lorenz values related to the predictors 

𝑋1, … , 𝑋𝑘∗. 
 

Definition 4. Sustainability score. The score for sustainability can then be defined as: 
 

⁡Sust-Score⁡ = 1 − 𝐿𝑍(𝑉𝐺
𝑆𝐿∗)                  (18) 

 

where 𝐿𝑍(𝑉𝐺
𝑆𝐿∗) indicates the Lorenz Zonoid (Gini coefficient) calculated on the vector 

𝑉𝐺
𝑆𝐿∗ whose elements correspond to the sum of the selected predictors' ShapleyLorenz 

values in each group. 
 

In the next Section we will apply our proposed methodology in the context of bitcoin 

price prediction. 

 

Empirical Analysis 

As an illustrative example of how to apply our proposal, we consider a set of 

cryptocurrency time series, for the time period between May 18th, 2016 and April 30th, 

2018. The considered data are the same described in (Giudici & Abu-Hashish, 2019) and 

in (Giudici & Raffinetti, 2020) to explain bitcoin price variation as a function of the 

available financial explanatory variables. A further investigation of the data was provided 
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in a work by (Giudici & Raffinetti, 2020), who introduced a new AI approach resulting in 

the formalisation of a normalised measure for the assessment of the contribution of each 

additional predictor to the explanation of the bitcoin prices. For coherence with the 

previous cited works, here we choose the same time series observations, with the bitcoin 

prices from the Coinbase exchange as the target variable to be predicted. As suggested by 

(Giudici & Raffinetti, 2020) and (Giudici & Raffinetti, 2020), the time series for Oil, 

Gold and SP500 prices are taken into account as candidate financial explanatory 

variables. In line with (Giudici & Abu-Hashish, 2019), the exchange rates USD/Yuan and 

USD/Eur are also included as possible further explanatory variables. Our aim is to exploit 

the Lorenz Zonoid tool as a unified criterion for measuring the SAFEty of AI 

methodologies. We start our explorative analysis of the available data by plotting the time 

evolution of bitcoin prices, together with that of the Gold, Oil and SP500 prices and the 

exchange rates, in the considered time period. The trends are displayed in Figures 2-7, 

respectively.  

 

  
Figure 2: Bitcoin Prices Figure 3: SP500 prices 

 

Specifically, from Figure 2 the bitcoin price appears quite stable until the beginning 

of 2017. But, since the first six months of the 2017 year, bitcoin prices begin to 

progressively increase reaching the maximum at the end of the same year. This dynamics 

is followed by a downtrend, which starts in January 2018. 
 

While the trend of the SP500 increases overtime (Figure 3), the prices of Gold and Oil 

(Figures 4 and 5) are characterised by uptrend and downtrend. The former is more 

evident at the end of the 2016 year for Gold, while for Oil it occurs some months before 

the end of the 2016. 
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Figure 4: Gold Prices Figure 5: Oil Prices 

 

On the other hand, the behavior of the exchange rates USD/Eur and USD/Yuan is 

quite similar overtime, as shown in Figures 6 and 7. 

 

  
Figure 6: USD/EUR Exchange Rate Figure 7: USD/YUAN Exchange Rate 
 

Table 1  

Summary Statistics for Coinbase Bitcoin, Classic Asset Prices, SP500  

Index and Exchange Rates (Mean, Standard Deviations (𝑺𝑫), Coefficient 

of Variation (𝑪𝑽 Minimum and Maximum Values). 

Prices Mean 𝑺𝑫 𝑪𝑽 Min Max 

Coinbase Bitcoin 3919.05 4318.98 1.10 438.38 19650.01 

SP500 2399.17 212.31 0.09 2000.54 2872.87 

Gold 1275.58 52.34 0.04 1128.42 1366.38 

Oil 49.36 3.37 0.07 39.51 57.20 

USD/Eur 0.88 0.04 0.05 0.80 0.96 

USD/Yuan 6.68 0.19 0.03 6.27 6.96 
 

To better understand the dynamics reported in Figures 2-7, some summary statistics are 
reported in Table 1. The results in Table 1 highlight that the mean values, as well as the 
standard deviations and the minimum and maximum values, are largely different with 
respect to those of the classical assets and exchange rates. To better appreciate the volatility 
magnitude of the prices, the coefficient of variation (𝑐𝑣) is computed and displayed in 
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Table 1. The findings show that the exchange rates are much less volatile than the bitcoin 
and classical asset prices. Indeed, for USD/Eur and USD/Yuan, the standard deviations are 
only 5% and 3% the size of the mean, respectively. A similar result in terms of volatility is 
achieved by Gold, whose standard deviation corresponds to 4% the size of the mean, while 
for Oil and SP500 the standard deviations slightly increase reaching values which are less 
than 10% of the mean. 
 

The aim of the data analysis is to build an explainable ML model that can predict 
bitcoin prices. Before proceeding, we transform all price series into their percentage returns. 
This because returns are scale free and the corresponding series are stationary (see, e.g. 
(Tsay, 2005)). As a ML model we apply, without loss of generality, a neural network with 
five hidden layers. We consider as training data the time series until December 31st, 2017; 
and as test data the 2018 time series. Figures 2-7 show that it will be difficult to obtain a 
high predictive accuracy, as the time series trends in 2018 change patterns with respect to 
the training data series. 
 

In any case, the application of our proposed approach leads to a series of predictions for 
the 2018 return prices that can be compared with the actual returns, to obtain measures of 
trustworthiness (S.A.F.E.ty) of the neural network. Figure 8 shows the results of such 
assessment, in graphical format. Figure 8(a) shows that the score of explainability of the full 
model, measured as the sum of all Shapley-Lorenz values (on all data), is equal to 0.5714, 
with the Gold price returns as the highest contributor. 
 

To simplify the model, we have then applied our proposed forward stepwise feature 
selection, following the order of the variables, in terms of their Lorenz Zonoid marginal 
contribution. The procedure inserts Gold returns, then SP500 returns and then it stops, as no 
additions lead to a significantly superior model. Our selected model, therefore, contains 
Gold and SP500 returns as predictors of bitcoin prices. 
 

Figure 8(b) shows the accuracy score of the selected model, in terms of Lorenz Zonoid. 
The Zonoid gives an accuracy score of 0.3280, which correspond to the percentage of 
bitcoin price variability explained by the model (on the test data). We have then assessed 
the sustainability score of the selected model. To this aim, we have ordered the test data 
response according to how well is predicted by the model (from the best to the worst 
predictions) and, accordingly, subdivided it into ten deciles. We have then calculated the 
Lorenz Zonoid of the model, separately in each decile. The result is shown in Figure 8(c). 
 

Figure 8(c) shows that, as expected, the predictions worsen, although not 
monotonically, as we increase deciles. Monotonicity does not hold as both the predictions 
and the values to be predicted vary along deciles. For example, the model goes relatively 
well in the tenth decile because not only the predictions but also the observations are less 
variable. 
 

According to our proposal, we can calculate, as a sustainability score, the complement 
of the Gini coefficient of the Lorenz Zonoid. It results to be equal to 0.8314, indicating a 
high sustainability. With the aim of assessing fairness, we have considered, as a potential 
biasing variable, the amount traded in each day, and evaluate whether price returns are fair 
with respect to it. If not, it will mean that bitcoin returns depends on the trading volumes. 
To measure fairness we have ordered the test data response in terms of the corresponding 
trading volumes (from the lowest to the highest) and, accordingly, subdivided it into ten 
deciles. We have then calculated the Lorenz Zonoid of the model, separately in each decile. 
The result is shown in Figure 8(d). 
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Figure 8(d) indicates that the model has the best performance in correspondence to the 
lowest and highest volumes of trading but also that, overall, the variation is limited. 
According to our proposal, we have computed as a fairness score, the complement of the 
Gini coefficient of the Lorenz Zonoid. It results to be equal to 0.8617, indicating a high 
fairness. 
 

To show the universality of our proposal, we have binarised the response variable, with 
𝑌 = 1 indicating positive returns and 𝑌 = 0 indicating negative returns, and applied the 
same neural network model as before, but to predict a binary, rather than a continuous 
response. Figure 9 shows the results of our S.A.F.E.ty assessment, in graphical format. 
From Figure 9(a), note that the model presents a lower overall explainability than before: 
the overall explainability score is equal to 0.3160. As before, the Gold price return is the 
most explainable series. 
 

Our proposed model selection procedure is then carried out exactly as for the 
continuous case. The selected model contains SP500 and Gold returns, as in the continuous 
scenario. The accuracy score of the model (see Figure 9(b)) is equal to 0.4088, higher than 
before, as expected, since the response variable now varies on a binary, rather than on a 
continuous scale. 
 

We have finally applied the sustainability and fairness assessments, in the same manner 
as for the continuous case. The results are in Figures 9(c) and 9(d), corresponding to scores 
of, respectively, 0.8184 and 0.716, While the sustainability of the model is similar to that 
corresponding to the continuous response case, fairness is lower, indicating that the sign of 
the returns depend on trading volumes more than the actual returns do that need reliable 
predictions to make investment decisions; financial authorities and supervisors that need to 
evaluate AI methods implemented by the institutions under their supervision; researchers 
that need to understand the functioning of financial markets. 
 

  
(a) Explainability (b) Accuracy 

  
(c) Sustainability (d) Fairness 

Figure 8: Continuous Scenario 
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(a) Explainability (b) Accuracy 

  
(c) Sustainability (d) Fairness 

Figure 9: S.A.F.E.ty Assessment of the Neural Network Model  

for Bitcoin Price Returns 

 

CONCLUSION 
 

The aim of the paper was to provide an integrated set of metrics able to assess the 

trustworthiness of AI applications. To this aim, we have extended the application of 

Lorenz Zonoids to obtain measurement tools for the Sustainability, Accuracy, Fairness 

and Explainability, as key trustworthiness criteria. By means of an easily downloadable 

datset of bitcoin prices, and related candidate predictors, we have provided a practical 

demonstration of how to implement and interpret the proposed metrics. Our proposed 

metrics can be easily embedded in a scorecard that can be beneficial to: asset 

management companies Explainability - Binarised scenario.  
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